Control and Coordination Notes – Class 10 Science

0

Control and Coordination

 

 

Importance of control and coordination

A living being does not live in isolation. It has to constantly interact with its external environment and has to respond properly for its survival. For example; when a hungry lion spots a deer, the lion has to quickly make a move so that it can have its food. On the other hand, the deer needs to quickly make a move to run for its life. The responses which a living being makes in relation to external stimuli are controlled and coordinated by a system; especially in complex animals.

 

Nervous System
The nervous system is composed of specialized tissues; called nervous tissue. The nerve cell or neuron is the functional unit of the nervous system. It is the nervous system which is mainly responsible for control and coordination in complex animals.

Neuron: Neuron is a highly specialized cell which is responsible for transmission of nerve impulses. The neuron consists of the following parts:

Fig: Neuron

  1. Cyton or cell body:The cell body or cyton is somewhat star-shaped; with many hair-like structures protruding out of the margin. These hair-like structures are called dendrites. Dendrites receive the nerve impulses.
  2. Axon:This is the tail of the neuron. It ends in several hair-like structures; called axon terminals. The axon terminals relay nerve impulses.
  3. Myelin Sheath:There is an insulator cover around the axon. This is called myelin sheath. The myelin sheath insulates the axon against nerve impulses from the surroundings.

 

Types of Neuron

  1. Sensory neuron:These neurons receive signals from a sense organ.
  2. Motor neuron:These neurons send signals to a muscle or a gland.
  3. Association neuron:These neurons relay the signals between sensory neuron and motor neuron.

 

Nervous System in Humans

The nervous system in humans can be divided into two main parts, viz. the central nervous system and the peripheral nervous system. The peripheral nervous system can be further divided into the somatic nervous system and the autonomous nervous system.

  • Central Nervous System: The central nervous system is composed of the brain and the spinal cord. The brain controls all the functions in the human body. The spinal cord works as the relay channel for signals between the brain and the peripheral nervous system.
  • Peripheral Nervous System: The peripheral nervous system is composed of the cranial nerves and spinal nerves. There are 12 pairs of cranial nerves. The cranial nerves come out of the brain and go to the organs in the head region. There are 31 pairs of spinal nerves. The spinal nerves come out of the spinal cord and go to the organs which are below the head region.
  • Autonomous Nervous System: The autonomous nervous system is composed of a chain of nerve ganglion which runs along the spinal cord. It controls all the involuntary actions in the human body. The autonomous nervous system can be divided into two parts:

    A. Sympathetic Nervous System:This part of the autonomous nervous system heightens the activity of an organ as per the need. For example; during running, there is an increased demand for oxygen by the body. This is fulfilled by an increased breathing rate and increased heart rate. The sympathetic nervous system works to increase the breathing rate and the heart rate; in this case.

    B. Parasympathetic Nervous System:This part of the autonomous nervous system slows the down the activity of an organ and thus has a calming effect. During sleep, the breathing rate slows down and so does the heart rate. This is facilitated by the parasympathetic nervous system. It can be said that the parasympathetic nervous system helps in conservation of energy.

Human Brain

Human brain is a highly complex organ; which is mainly composed of the nervous tissue. The tissues are highly folded to accommodate a larger surface area in less space. The brain is covered by a three layered system of membranes; called meninges. Cerebrospinal fluid is filled between the meninges. The CSF provides cushion to the brain against mechanical shocks. Furthermore, the brain is housed inside the skull for optimum protection. The human brain can be divided into three regions, viz. forebrain, midbrain and hindbrain.

Parts of Human Brain

  • Forebrain: It is composed of the cerebrum.
  • Midbrain: It is composed of the hypothalamus.
  • Hindbrain: It is composed of the cerebellum, pons and medulla oblongata.

Some main structures of the human brain are explained below.

Cerebrum: The cerebrum is the largest part in the human brain. It is divided into two hemispheres; called cerebral hemispheres.

Functions of cerebrum:

  • The cerebrum controls the voluntary motor actions.
  • It is the site of sensory perceptions; like tactile and auditory perceptions.
  • It is the seat of learning and memory.

Hypothalamus: The hypothalamus lies at the base of the cerebrum. It controls sleep and wake cycle (circadian rhythm) of the body. It also controls the urges for eating and drinking.

Cerebellum: Cerebellum lies below the cerebrum and at the back of the whole structure. It coordinates the motor functions. When you are riding your bicycle; the perfect coordination between your pedaling and steering control is achieved by the cerebellum.

Medulla: Medulla forms the brain stem; along with the pons. It lies at the base of the brain and continues into the spinal cord. Medulla controls various involuntary functions; like hear beat, respiration, etc.

Reflex Action:

Reflex action is a special case of involuntary movement in voluntary organs. When a voluntary organ is in the vicinity of a sudden danger, it is immediately pulled away from the danger to save itself. For example; when your hand touches a very hot electric iron, you move away your hand in a jerk. All of this happens in flash and your hand is saved from the imminent injury. This is an example of reflex action.

Reflex Arc: The path through which nerves signals; involved in a reflex action; travel is called the reflex arc. The following flow chart shows the flow of signal in a reflex arc.

Receptor ⇨ Sensory Neuron ⇨ Relay neuron ⇨ Motor neuron ⇨ Effector (muscle)

The receptor is the organ which comes in the danger zone. The sensory neurons pick signals from the receptor and send them to the relay neuron. The relay neuron is present in the spinal cord. The spinal cord sends signals to the effector via the motor neuron. The effector comes in action moves the receptor away from the danger.

The reflex arc passes at the level of the spinal cord and the signals involved in reflex action do not travel up to the brain. This is important because sending signals to the brain would involve more time. Although every action is ultimately controlled by the brain, the reflex action is mainly controlled at the level of spinal cord.

Muscular Movements and Nervous Control: Muscle tissues have special filaments; called actin and myosin. When a muscle receives a nerve signal; a series of events is triggered in the muscle. Calcium ions enter the muscle cells. It results in actin and myosin filaments sliding towards each other and that is how a muscle contracts. Contraction in a muscle brings movement in the related organ.

Endocrine System

The endocrine system is composed of several endocrine glands. A ductless gland is called endocrine gland. Endocrine gland secretes its product directly into the bloodstream. Hormones are produced in the endocrine glands. Hormone is mainly composed of protein. Hormones assist the nervous system in control and coordination. Nerves do not reach to every nook and corner of the body and hence hormones are needed to affect control and coordination in those parts. Moreover, unlike nervous control; hormonal control is somewhat slower.

Endocrine glandLocationHormones ProducedFunctions
Pituitary gland (Also known as the master gland)At the base of brainGrowth hormone (GH), thyroid stimulating hormone (TSH), Follicle stimulating hormone (FSH)GH stimulates growth, TSH stimulates functioning of thyroid gland, FSH stimulates the follicles during ovulation.
Thyroid GlandNeckThyroxineControls general metabolism and growth in the body.
Adrenal glandAbove kidneysAdrenalinPrepares the body for emergency situations and hence is also called ‘Fight and flight’ hormone.
PancreasNear stomachInsulinControls blood sugar level
Testis (male)In scrotumTestosteroneSperm production, development of secondary sexual characters during puberty.
Ovary (female)Near uterusOestrogenEgg production, development of secondary sexual characters during puberty.

 

Coordination in Plants:

Unlike animals, plants do not have a nervous system. Plants use chemical means for control and coordination. Many plant hormones are responsible for various kinds of movements in plants.
Movements in plants can be divided into two main types, viz. tropic movement and nastic movement.

Tropic Movement:
The movements which are in a particular direction in relation to the stimulus are called tropic movements. Tropic movements happen as a result of growth of a plant part in a particular direction. There are four types of tropic movements, viz. geotropic, phototropic, hydrotropic and thigmotropic.

  1. Geotropic Movement:The growth in a plant part in response to the gravity is called geotropic movement. Roots usually show positive geotropic movement, i.e. they grow in the direction of the gravity. Stems usually show negative geotropic movement.
  2. Phototropic Movement:The growth in a plant part in response to light is called phototropic movement. Stems usually show positive phototropic movement, while roots usually show negative phototropic movement. If a plant is kept in a container in which no sunlight reaches and a hole in the container allows some sunlight; the stem finally grows in the direction of the sunlight. This happens because of a higher rate of cell division in the part of stem which is away from the sunlight. As a result, the stem bends towards the light. The heightened rate of cell division is attained by increased secretion of the plant hormone auxin in the part which is away from sunlight.
  3. Hydrotropic Movement:When roots grow in the soil, they usually grow towards the nearest source of water. This shows a positive hydrotrophic movement.
  4. Thigmotropic Movement:The growth in a plant part in response to touch is called thigmotropic movement. Such movements are seen in tendrils of climbers. The tendril grows in a way so as it can coil around a support. The differential rate of cell division in different parts of the tendril happens due to action of auxin.

Nastic Movement:

The movements which do not depend on the direction from the stimulus acts are called nastic movement. For example; when someone touches the leaves of mimosa, the leaves droop. The drooping is independent of the direction from which the leaves are touched. Such movements usually happen because of changing water balance in the cells. When leaves of mimosa are touched, the cells in the leaves lose water and become flaccid; resulting in drooping of leaves.

Some Plant Hormones: Auxin, gibberellins and cytokinin promote growth in plant parts. Abscissic acid inhibits growth in a particular plant part.

HORMONES IN ANIMALS

How are such chemical, or hormonal, means of information transmission used in animals? What do some animals, for instance squirrels, experience when they are in a scary situation? Their bodies have to prepare for either fighting or running away. Both are very complicated activities that will use a great deal of energy in controlled ways. Many different tissue types will be used and their activities integrated together in these actions. However, the two alternate activities, fighting or

running, are also quite different! So here is a situation in which some common preparations can be usefully made in the body. These preparations should ideally make it easier to do either activity in the near future. How would this be achieved?

If the body design in the squirrel relied only on electrical impulses via nerve cells, the range of tissues instructed to prepare for the coming activity would be limited. On the other hand, if a chemical signal were to be sent as well, it would reach all cells of the body and provide the wideranging changes needed. This is done in many animals, including human beings, using a hormone called adrenaline that is secreted from the adrenal glands

Adrenaline is secreted directly into the blood and carried to different parts of the body. The target organs or the specific tissues on which it acts include the heart. As a result, the heart beats faster, resulting in supply of more oxygen to our muscles. The blood to the digestive system and skin is reduced due to contraction of muscles around small arteries in these organs. This diverts the blood to our skeletal muscles. The breathing rate also increases because of the contractions of the diaphragm and the rib muscles. All these responses together enable the animal body to be ready to deal with the situation. Such animal hormones are part of the endocrine system which constitutes a second way of control and coordination in our body.

Remember that plants have hormones that control their directional growth. What functions do animal hormones perform? On the face of it, we cannot imagine their role in directional growth. We have never seen an animal growing more in one direction or the other, depending on light or gravity! But if we think about it a bit more, it will become evident that, even in animal bodies, growth happens in carefully controlled places. Plants will grow leaves in many places on the plant body, for example. But we do not grow fingers on our faces. The design of the body is carefully maintained even during the growth of children.

 

Let us examine some examples to understand how hormones help in coordinated growth. We have all seen salt packets which say ‘iodised salt’ or ‘enriched with iodine’. Why is it important for us to have iodised salt in our diet? Iodine is necessary for the thyroid gland to make thyroxin hormone. Thyroxin regulates carbohydrate, protein and fat metabolism in the body so as to provide the best balance for growth. Iodine is essential for the synthesis of thyroxin. In case iodine is deficient in our diet, there is a possibility that we might suffer from goitre. One of the symptoms in this disease is a swollen neck. Can you correlate this with the position of the thyroid gland.

Sometimes we come across people who are either very short (dwarfs) or extremely tall (giants). Have you ever wondered how this happens? Growth hormone is one of the hormones secreted by the pituitary. As its name indicates, growth hormone regulates growth and development of the body. If there is a deficiency of this hormone in childhood, it leads to dwarfism.

You must have noticed many dramatic changes in your appearance as well as that of your friends as you approached 10–12 years of age. These changes associated with puberty are because of the secretion of testosterone in males and oestrogen in females.

Do you know anyone in your family or friends who has been advised by the doctor to take less sugar in their diet because they are suffering from diabetes? As a treatment, they might be taking injections of insulin. This is a hormone which is produced by the pancreas and helps in regulating blood sugar levels. If it is not secreted in proper amounts, the sugar level in the blood rises causing many harmful effects.

If it is so important that hormones should be secreted in precise quantities, we need a mechanism through which this is done. The timing and amount of hormone released are regulated by feedback mechanisms. For example, if the sugar levels in blood rise, they are detected by the cells of the pancreas which respond by producing more insulin. As the blood sugar level falls, insulin secretion is reduced.


Leave A Reply

Your email address will not be published.

Click Here to ASK Doubtsx